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of arbitrary shape in an otherwise isothermal cavity.
In more general terms, these effects will occur in the
radiation from a blackbody surface at wavelengths
which are of the order of the body dimensions.

Finally, it is worth while to recall that simply by
invoking the thermodynamic principle of the detailed
balancing of radiation one can compute the spectral
absorptivity of a body from its spectral thermal radia-
tion pattern or vice versa. Thus, it follows that the
spectral absorptivity of a body also exhibits the above-
itemized characteristics at wavelengths which are of
the order of the body dimensions.

V. ACKNOWLEDGMENT

The author wishes to acknowledge the many helpful
discussions with C. H. Papas throughout the course of
this work. Valuable consultation was also given by G. J.
Stanley on radiometer principles and practices during
the design of the equipment for the experiments.

The author wishes to express his appreciation to
R. L. Roderick and G. F. Smith who encouraged this
work. This research was supported in part by a fellow-
ship grant from the Hughes Aircraft Company, Culver
City, Calif.

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

September

REFERENCES

[1] H. Nyquist, “Thermal agitation of electric charge in conduc-
tors,” Phys. Rev., vol. 32, pp. 110-113; July, 1928.

[2] P. Parzen and L. Goldstein, “Current fluctuations in dc gas
discharge plasma,” Phys. Rev., vol. 79, pp. 190-191; July, 1950,

[3] J. B. Johnson, “Thermal agitation of electricity in conductors,”
Phys. Rev., vol. 32, pp. 97-109; July, 1928.

[4] W. W. Mumford, “A broad-band microwave noise source,” Bell
Syst. Tech. J., vol. 28, pp. 608-618; October, 1949.

[S] M. A. Leontovich and S. M. Rytov, Zh. Eksp. Teor. Fiz., vol.
23, pp. 246-252; 1952.

[6] H. G. Booker, “Slot aerials and their relation to complementary
wire aerials,” J. IEE, vol. 93, pp. 620-626; 1946.

[7] S. A. Schelkunoff and H. T. Friss, “Antennas, Theory and Prac-
tice,” John Wiley and Sons, Inc., New York, N. Y.; 1952.

[8] J. Weber, “Scattering of electromagnetic waves by wires and
plates,” Proc. IRE, vol. 43, pp. 82-89; January, 1955.

[9] W. R. Smythe, “Static and Dynamic Electricity,” McGraw-Hill
Book Co., Inc,, New York, N. Y.; 1950.

[10] M. L. Levin and S. M. Rytov, “Thermal radiation from a thin
re%télinear antenna,” J. Tech. Phys., vol. 25, pp. 323-332;
1955.

[11] N. George, “Spatial distribution of thermal radiation at micro-
wave frequencies,” Antenna Lab., Calif. Inst. Tech., Pasadena,
Calif., rept. no. 18, 1959.

[12] V. Westberg, “Measurements of noise radiation at 10 cm from
gl%\g lamps,” Chalmers Tek. Hogskol. Handl., nr. 180, pp. 1-14;
1956.

[13] A. von Engel, “Ionized Gases,” Oxford Univ. Press, London,
Eng.; 1955.

[14] S. Silver, “Microwave Antenna Theory and Design,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1949,

[15] R. H. Dicke, “Measurement of thermal radiation at microwave
frequencies,” Rev. Sci. Instr., vol. 17, pp. 268-275; July, 1946.

Variational Principles and Mode Coupling in

Periodic Structures®
T. J. GOBLICK, JR.t anp R. M. BEVENSEE], MEMBER, IRE

Summary—Variational techniques are used in analyzing periodic
“cold” microwave structures for the angular frequency, », as a func-
tion of assumed phase shift per periodic cell. Two variational ex-
pressions are given: one for « in terms of the E- and H-fields, and
one for k%=cw?ue in terms of the E-field. For structures with relatively
light coupling between cells, the trial fields to be used with the varia-
tional expressions are composed of closed cavity modes, phase
shifted by ¢ radians from cell to cell. Both variational expressions
yield determinantal equations for k%(¢) which agree with equations
previously derived from a mode coupling point of view. One form of
an equivalent lumped circuit is given to represent the structure with-
in one of its pass bands.

Curves compare the variational-mode coupling expression for
k(¢) of a periodically lumped loaded transmission line with exact
expressions.
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I. INTRODUCTION
pERIODIC structures have received extensive

theoretical and experimental treatment in the past

in regard to applications in traveling wave tubes.
The advent of high power traveling wave tubes proved
it was still not a simple matter to design slow wave
structures which could dissipate large amounts of
power while still operating over a relatively large band
of frequencies [1].

To analyze a simple periodic structure, such as an
iris-loaded waveguide, is a formidable task. The method
of analysis used here is that of mode coupling. For the
case of a very heavily shunt-loaded waveguide, the
coupling holes in the irises are small compared to the
total iris area. The structure resembles a chain of
loosely-coupled resonant cavities and so the electric
and magnetic fields of the structure resemble normal
cavity modes of a section of the structure. The weaker
the coupling between sections is made, the closer is the
resemblance of the fields to those of the actual cavities.
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In this mode-coupling analysis, the fields of the
periodic structure are approximated by the normal
cavity modes of oscillation of a section of the structure.
These cavity modes are phase shifted from section to
section by a phase angle ¢ to simulate a propagating
wave. By use of these approximations, a relation be-
tween w? (w=frequency) and phase shift per section,
¢, may be derived. In this way, the propagation
characteristics of the heavily loaded structure are ob-
tained in terms of resonant modes of a cavity section
of the structure for any assumed phase shift ¢. The
coupling coefficients between adjacent sections are ex-
pressed in an intuitively appealing form in this mode
coupling approach.

In solving for the physical parameters of a very
complicated system, we often find it advantageous to
use variational techniques to arrive systematically at
good approximate answers. Such techniques have been
used to find cutoff frequencies and propagation con-
stants of waveguides as well as resonant frequencies for
cavities. In all of these applications, variational prin-
ciples allowing the use of trial fields which are not ex-
actly correct in detail can give quite accurate results.

The periodically loaded waveguide, viewed either as
a waveguide with slight periodic perturbations of its
walls or as a chain of coupled cavities, can be treated
using a variational principle. The variational principle
used here allows w? to be computed for assumed trial
fields and phase shift per section ¢. For the case of
heavy shunt loading of the guide, trial fields which are
actually resonant modes of a cavity section of the
structure are used together with an assumed ¢. The
relation between w? and ¢ that is found is identical to
the coupling equations derived purely from a mode
coupling approach [2], [3].

The variational technique is appealing because it
vields a sort of optimum value of «? for the given set of
trial functions, namely that w? which is minimized for
these trial functions. But this implies that the error in
«? is of second order compared to the actual error in
the trial functions, and this is the advantage of this
technique. The trial fields are not just used as approxi-
mate fields to get answers; they may be adjusted ac-
cording to a definite procedure to obtain the most ac-
curate approximation to the correct w? for the assumed
form of the trial fields.

The fact that the same coupling equations are found
from mode coupling and from the variational principle
signifies that the mode-coupling formalism has a formal
mathematical basis in variational techniques. Mode
coupling, then, is not simply an intuitively convenient
approximation to use in some problems.

The results obtained here for the heavily-loaded
periodic structure are useful in studying the effects of
more complicated schemes of coupling between ad-
jacent cavity sections. The mode-coupling equations
for a capacitively lumped-loaded transmission line were
derived, and for this simple periodic structure it is easy
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to obtain curves to show how well very simple trial
fields may be used to obtain accurate answers.

II. THE VARIATIONAL PRINCIPLE

In a lossless periodic structure such as the iris-loaded
waveguide shown in Fig. 1, we know that the electric
and magnetic fields satisfy Maxwell’s equations

V X E + jopH = 0, (1)
V X H — jweE = 0, (2)

when the medium filling the structure is isotropic,
homogeneous, and nonconducting (a time-dependence
of e7¢t has been assumed). The boundary condition that
the electric field satisfies is stated as

aXE=0 onS, 3)

where n is the unit vector which is normal to the per-
fectly conducting surface S which makes up the periodic
structure, (see Fig. 2). Another important property of
the fields in a periodic structure is expressed in a theorem
by Floquet [4]. From this theorem, we may write in
functional notation

E(ul’ Us, Z) = E(”b U2, Z>e_7z; (4)

where now E(u1, u, 2) is a periodic function of z having
the same period L as the structure. (#; and u, are gen-
eralized transverse coordinates.)

E(uy, s, 5) = E(uy, s, 5 + L). (5)

The magnetic field naturally has this same property.
Using these known properties of the fields of the
periodic structure, one may derive a variational expres-
sion for jw. Consider the E- and H-fields of (1) and (2)
to pertain to a wave traveling in the positive z-direction

AZ—.:,_‘ [ ﬁijH—AZ
|
T 722
Z=0 Z=L
Z

Fig. 2-—A section of the periodic structure showing notation used.
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of the structure. Calling these fields E, and H., we
may now dot-multiply (1) by H_* (*stands for complex
conjugate), the magnetic field of another wave solution
called the adjoint solution, and integrate throughout
the volume T of one cell or section of the structure.
Correspondingly, multiply (2) by E_*, the electric
field of the adjoint solution, and integrate. Subtracting
the two resulting equations and solving for jw, which
is not a function of the variables of integration, gives

fE_*-VXH+dV—fH_*-V X E.dV
R 14 14
Jo = - (6)
ufH+-H_*dV + ef E.-E_*dV
v v

The proof that (6) is actually a variational principle
for w is given in Appendix I. It is found in this proof
that for arbitrary first-order variation of w equal to
zero, the adjoint solution satisfies the equations

VX E* — jouH * =0 )
VX H* 4 jueE ¥ = 0, )

provided the adjoint trial field satisfies boundary con-
dition (3) and the conditions E_(L)=FE_(0)e %,
H(L) =H—(0)e~vL, Since the latter conditions imply
Floquet’s theorem, we can demand

E_(u1, us, ) = E_(u1, ts, 2)e7%, 9)

where this is the same value of ¥ as in (4), which in-
dicates that the adjoint wave also propagates in the
positive z-direction.

The variational principle may be used together with
suitable trial fields for E;, H,, E_, and H_ to obtain
approximations to w which are in error to second order
compared to the errors in the trial fields themselves.
Consider first an iris-loaded waveguide in which the
coupling holes in the irises are very small. The coupling
between adjacent cells is now very weak and the
periodic structure actually appears to be a chain of
weakly-coupled cavities. The fields in a particular
cavity section of the periodic structure should resemble
to a fair degree the fields of an undriven cavity. For this
case then, the pass bands are very narrow compared to
the stop bands; and since we are interested in the propa-
gation characteristics in a pass band only, we are con-
cerned with a narrow {requency range. It seems rea-
sonable, then, to approximate each field by several
terms of a normal mode expansion of a cavity section.
This 1s what we will do to construct trial fields. The
simplest approximation would be to use only one term
of a mode expansion as a trial field.

However there are two different normal mode ex-
pansions which can be defined for a cavity section. The
short-circuit mode expansion is derived for the boundary
condition that the tangential electric field disappears
over the entire surface of the cavity including the sur-
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faces Sy, So’ (see Fig. 2) in the plane of the holes. The
open-circuit mode expansion is found for the boundary
condition of (3) on S (but the tangential magnetic
field must be zero on Sy, S»’). These two mode expan-
sions are closely related to the behavior of the periodic
structure. For every short-circuit resonant mode, there
is a corresponding open-circuit mode which has fields
very similar to the short-circuit mode except in the im-
mediate vicinity of the coupling holes. The resonant
frequencies of this pair of modes are not very different
when the holes are small. The frequency range between
them corresponds to a pass band of the periodic struc-
ture [4]. To obtain an approximation to the propaga-
tion characteristics in a particular pass band, we would
choose the short-circuit mode corresponding to that
pass band as the E; and H, trial fields and the open-
circuit mode as the E_ and H_ trial fields.

Let us summarize the properties of these two mode
expansions. First, the fields of the #nth short-circuit
mode can conveniently be defined by the equations [5]:

VX E, = P,H,, (10a)
V X H, = P,E., (10b)
P.? = wenlue, (11)

ny X E, =0 on S, Sy, Sy, (12)

where n, is the outward unit vector normal to the
boundary surface of a cavity section. ws, is the resonant
frequency of this nth short-circuit mode. For the mth
open circuit mode the resonant frequency is w.m and
the corresponding equations are:

V X en = pnhn, (13a)
V X hn = puen, (13b)

sz = womz,ue, (14)
nyXe,=20 on S, (15a)
ng X hm =0 on Sll, Sz,. (1512))

We have seen from Appendix I that the trial fields
must also satisfy Floquet's theorem, so the E; trial
field is constructed as follows. Remember that we are
trying to approximate the fields of the periodic structure
for frequencies in the nth pass band for a propagating
wave having a phase shift per section of ¢ radians. The
electric field in the (0) cavity section of Fig. 2 is ap-
proximated by the cavity short-circuit mode E,. The
field in the preceding (—1) cavity section is assumed to
be the same as in the (0) section, but phase shifted by
an angle ¢ to simulate propagation in the positive z-
direction,

E.® = V,E,; E;D = V,E,e®. (16a)
The H, trial field is similarly constructed from H,.

H+(0) = Ian’ H+(_1) = Iane].¢~ (16b)
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V. and I, are merely adjustable amplitude factors in
the trial fields which will be adjusted in an optimum
way using the variational principle. :

For the adjoint trial fields, propagation in the positive
z-direction is also simulated, and we use the open-
circuit mode corresponding to this nth pass band in
which we are interested.

E_© = y,e,;

H_ ©® = q4h,,

E_1 = g,e,e/®

H_ &Y = 4,h,e™.

(17a)
(17b)

These trial fields are now substituted into (6) and a
relation for jw is found in terms of ¢, the phase shift per
sectior.. An important point to notice is the fact that
the trial fields are discontinuous in the plane of the
holes because each cavity mode is actually a standing
oscillation. The discontinuity is due to a phase shift
and possibly to the behavior of the mode patterns (see
Figs. 3 and 4). If the surfaces S’ and .Sy" are considered
as pillbox volumes only Az thick in which the discon-
tinuities appear, we must choose the volume, V, of one
section so that it includes part of the pillbox at Sy and
part of the pillbox at .Sy’ so the total volume integral
throughout a section contains the volume of one whole
pillbox (see Fig. 2).

=) (b)

Fig. 3—Examples of (a) an even short-circuit mode and (b) an even
open-circuit mode. Solid lines represent electric field lines; dashed
lines represent magnetic field lines.

—
|
=

(0) (+1)

%

a) (h)

Fig. 4—Examples of (a) an odd short-circuit mode and
(b) an odd open-circuit mode.

In (6), the integral
f E_*.V X HydV
v

may be broken up into the integral over the volume of a
section plus an integral over a pillbox. The pillbox
volume is important in this term since there is a differ-
entiation of field discontinuities in VX H,. Since Az is
considered to be very small and the trial field to be
substituted for E_¥ is tangential at .Sy" and S/, we may
replace VX H, by a,X0dH,/dz, which is the only term
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producing components tangential to Sy’ and Sy'. The
pillbox integral may be written as

Z=0"
f [ f e VX Hndz} da
8y Z=0"
z=0t 9
:f |: f e .a X — Hndz:la’a
Sy 70" dz

1
. [e.*(07) 4 ex*(0)]
2J s

la. X H,(0") — a. X H,(07)]da.

(18)

The final result in (18) is obtained by our assuming any
smooth functional variation of the fields e,* and H,
within the pillbox, so long as each of these fields has the
same functional variation. The final result, then, does
not depend on the specific functional variation, and the
form in (18) emerges.

The cavity modes of a section of the periodic struc-
ture are either symmetric or antisymmetric with respect
to the z-axis in a section. Let us define an “even” mode
as one which has an even number of reversals of its
electric field along the z-axis of a section. From Fig. 3,
we can see that for even modes,

H,%07) = H,“Y(L) = H,“Y(0) = H,®(0)e#, (19a)
e,2(07) = e, V(L) = — e, (0) = — e,»(0)e®. (19b)
Let us solve for w(¢) between Py and #2 by employing

the E;—H, and e>—h; modes in (6). With the aid of
(16), (17), and (18), the expression for w is found to be

A 7)2*]2P2T2 — ‘I)Q*IzMQ(l — COS qS) — if)_*VngUg
w -

J ,U.[ziz*Uz —]- €V27)2*T2

We have defined

- (20)

T2 :f e2*~E2dV
14

U2 thz*Hng
14

M, = f a, X e*(01) - Hy(0M)da,
S

where a, is the unit vector in the gz-direction. To op-
timize the coefficients for the best approximation to
® we must minimize (20) with respect to each amplitude
coefhicient. Setting the partial derivatives of (20) with
respect to 22* and vy* equal to zero gives the coupling
equations

P‘2V2 == — jwufg,
Pz[szij€V2T2 + IzMg(l — COS (15).

(21)
(22)

Eliminating V, from these two expressions results in
one equation

(P? — E) T = PyaMs(1 — cos ¢), (23)
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where k?=w’ue. Eq. (23) also results from our varying
(20) with respect to I, and V.

When the phase shift per section is 7 radians, we are
at a cutoff of the pass band and also at a resonance of a
cavity section. For even modes, ¢ =7 radians corre-
sponds to the open circuit resonance where then k%= p2
Use of this information in (23) leads to!

Pl L pe— ) (24)
TZ 2 2 2/
Then (23) may be simplified to,
2 _I__ P 2 b 2 . P 2
k? = #2 5 L2 5 2 cos o. (25)

We define “odd” modes as those normal modes of a
cavity section in which the electric field reverses an odd
number of times along the z-axis. From Fig. 4, we can
see that for odd modes (19a) and (19b) take the new
form

H,(0") =H,"Y(L) = — H,"P(0) = — H,©(0)e”, (26a)
e(07) = e, V(L) = e, (0) = e, (0)e®, (26b)
Use of these expressions would give as a final result

2_'_P2 Z_PZ
/’eﬂ:p1 . 1—|—p1 5 1cosq&,

27

where we use the odd subscript 1 to show that (27) ap-
plies for an odd mode pair.

If more cavity modes are included in the trial fields,
one obtains a matrix equation whose determinant set
equal to zero replaces the (23) for k2. This determinant
checks that previously derived from a mode-coupling
approach [2]. It will also agree with the determinant
later to be derived from a variational expression for k2
in terms of the E-field alone.

An equivalent circuit interpretation of (20) follows
for both even and odd modes. Combining (19a) and
(19b) with (26a) and (26b) results in a compact way
to express the mode properties:

H,(L) = (—1)"H,(0) = H,(07)e 7
en(L) = (—1)"en(0) = en(07)e?,

(282)
(28b)

where the subscripts # will be even to refer to even
modes and odd when odd modes are used. If we use
(28a) and (28b) in (6) and obtain a more general form of
(20) valid for even or odd mode pairs we may vary this
expression with respect to Vo, I, v,*, and 7,* in a man-

1 It is to be understood that thlS relation (24) is valid for a cavity
section if the fields used for E_* and E, in the integrals M, and T
are valid representations of the exact fields at its open- and short-
circuit resonances, respectively. In this case of a lossless structure,
only a single mode is used to represent the fields at each of these
resonances, and (24) is exact. If complete open- and short-circuit
normal mode expansions for the cavity section were used in M5 and
T, in general, (24) would be exactly true.
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ner analogous to our operations with (20). We obtain
a set of equations which leads to an equivalent circuit
representation of the two-mode-coupling approximation
(even or odd modes) for a periodic cavity structure.
Now define

Vo = — joL, I,
"
L, =—; Cp=— 29
7. - (29)
We have now
V.4 I, I, I,e1? (—1)
* T,  jwCh T
iwC, —— 2jwC,,
Ine_7¢
- —1)n=0 30
T (=1 (30
2jwC,

n

Fig. 5 shows a lumped circuit which leads to the same
(30) and is then one form of an equivalent circuit for
the periodic structure. This equivalent circuit stems
directly from the mode-coupling approach. For even
modes, the quantity 7',/ M, is negative. For odd modes,
T./M, is positive and there is a negative capacitive
coupling between cavity sections.

=0 _,, +i¢ (+0)_

vilay e Vi ARERPRL

Ln Cn H—L—;—» Cn Ln Cn
- |
— ] I} SILN I—---
N +ig SN 0 -ig
I, =1 ) S
T
(=1 (0} (+1
=

Fig. 5—A lumped equivalent circuit for the periodic structure from
the single mode pair analysis. The dotted lines correspond to odd
modes, solid lines to even modes. (Co,=—2C,T,/M,).

In the variational principle derived here, both electric
and magnetic fields appear, and this means both trial
fields must be chosen, but according to certain con-
straints. There is another variational principle for
periodic structures in which only a single field appears.
The electric field of a periodic structure obeys the vector
wave equation

VXVXE— FE=0. (31)

We may consider the E-field of (31) to pertain to a
wave traveling in the positive z-direction and call it the
E, field. Then dot-multiply (31) by E_*, the adjoint
wave electric field, and integrate throughout the volume
of one section of the structure. Solving for k2, we get
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fE_*-V X V X E.dV
14

B =
f E_*.EdV
;

The actual proof that (32) is a variational principle for
k2 involving only electric fields is shown in Appendix II.
It is found in this proof that setting 8 [£2] =0 forces the
adjoint solution to satisfy the equation

VX VX E*— RE* =0,

32)

(33)

provided E_(L)=E_(0)e—*L. Since the latter condition
implies (9), we see that the adjoint is a wave propaga-
ting in the positive z-direction. Now we need only to
construct trial fields for E; and E. for (32).

This time, let us construct more general trial fields
for more accuracy in finding k2. If the modes of either

[(P12 - kZ)Tn - P1M11(1 -+ COS¢)] [_PlMl‘l(j sin ‘7-")] t
[(P22 — k) Ty — P2M22(1 — Cos ¢)] coe

[— PoMai(—j sin ¢)]
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expansion were arranged in order of increasing resonant
frequencies, one would find even and odd modes al-
ternating. We could attach even or odd subscripts to
correspond to even and odd modes, and then the mode
properties could be written as in (28a) and (28b). The
simple single mode-pair approximation using only a
single term for each trial field gives good results when
the coupling between cavities is weak. As the coupling
holes are made larger, the actual fields do not resemble
very closely a single resonant mode of a section. The
next step in trial fields would be to make them more
accurate by including several more terms of each ex-
pansion for trial fields. The extra terms should, of
course, be chosen as those having resonant frequencies
closest to the pass band of interest. The trial fields in
the (0) cavity may be expressed as

E.® = ¢E1+ &:Ex + - -+ @B+ -
= > a,E, (34a)

the lowest-order mode being even, as depicted in Fig. 3.
E_©® = bie; + brez + - -+ + buen + - -

= E bmem.

Putting these trial fields [(34a) and (34b) ] into (32)
would give a coupling equation containing the co-
efficients a@. and b, To optimize these coefficients for
the values of E? corresponding to the perturbed P, and
P.., we would take partial derivatives with respect to
each @, (or bn; the final determinantal equation is the

(34b)
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same) and set the equations equal to zero. For the uth
(a.) coefficient, we would get

1 1
Z[w&—wnm—hMm{5+?cqu

m

el® . -

PRl .
- — (=1 ———2——(—1)} bo*=0. (35

2

The following definitions have been introduced:

Tum =fEu-em*dV
v

Mmzf
8

We could cast this set of equations into matrix form,
which would yield the determinantal equation for £*
in terms of ¢.

a, X ex*(0%) - H,(0M)da.

v

by*

b* | =0 (36)

The determinantal equation arising from (36) agrees
exactly with that found by Bevensee [2], solving the
problem without the use of the variational principle
but merely using a straightforward mode-coupling ap-
proach. It can also be seen that (36) simplifies to (25)
(with the “2” subscript changed to “0”) or (27), if only
My or My is assumed to be nonzero. This reduces the
trial fields to the single mode-pair case again.

If we used the complete normal mode expansions in
(34a) and (34b), we could represent the fields in a
cavity section exactly at any frequency, and these trial
fields, together with (32), would yield an exact deter-
minantal equation for k2 In this paper, we are studying
the problems of approximating this determinantal
equation for k? by using approximate but simple trial
fields in (32).

III. Tae PeEriopIicALLY LUMPED-LOADED
TRANSMISSION LINE

For illustration of the accuracy inherent in this
mode-coupling approach to periodic structures, numer-
ical results were worked out for a simple model of a
periodic structure. The model chosen was a transmission
line shunted periodically by lumped capacitance. Since
the exact propagation characteristics for this model
can easily be found, a comparison could be made be-
tween the exact behavior and that predicted by the
mode-coupling equations [6], [7].

The periodically-loaded lossless transmission-line
model that was found very convenient to handle using
variational techniques was that of a nonuniform line in



506

which the inductance and capacitance were allowed to
vary (periodically) with distance along the line.
Analogous to the Maxwell equations used for the
periodic cavity structure, we now have the nonuniform
transmission-line equations

d

—V(s) = — juL{®)1() (37)

dz

d

= I(z) = — juC(2)V(2), (38)
2

where the time dependence ¢/“! is assumed again, and 2
is the distance along the line. It can be verified in a
manner completely analogous to the above presenta-
tion that a variational principle for this periodic struc-

ture is
L ar 1 d
(R EEah
o dz_L(3) dsz

w?= — ’

L
f Ca)V. V_*dz
0

(39)

where L is the length of one periodic section of the
structure.

Up to this point these expressions are perfectly
general for a lossless, periodic, transmission-line struc-
ture. For simulation of periodic shunt loading by
lumped capacitor elements, L(z) is treated as a con-
stant, Ly, and C(z) takes the form of a constant, Co,
plus impulse functions (area 2Cs) which appear periodi-
cally with separation L. This completes the one-
dimensional formulation of this structure. Fig. 6 shows

- (0) (+1)
\"—orco
Cs Cs Cs Cs
| |
[0} L
I —

Fig. 6—The periodically-loaded transmission line
broken into sections.

the structure that is analyzed when it is broken into
convenient periodic sections. The open-circuit and
short-circuit modes of a section of this structure are
easily found, and these modes are used to approximate
voltage and current distributions on the section. The
open-circuit modes are substituted in (39) for V_ and
the short-circuit modes for V..

Curves for the structure shown in Fig. 6 are shown
onlyEfor two pass bands occurring at the lowest fre-
quencies. When the trial fields consist of only single

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

September

terms of the mode expansions discussed above, the
curves are marked “single mode-pair case”; for trial
fields of two terms from each expansion, the terminology
“two mode-pair case” is used, etc.

The loading factor is defined as the ratio of the sus-
ceptance of one of the shunt capacitors to the charac-
teristic admittance of the unloaded line at a normalized
frequency of 1. Fig. 7 shows the w vs ¢ characteristics
for the first two pass bands for the various trial fields.
Fig. 8 shows the w vs ¢ curves for various loading factors
(various amounts of shunt loading) for the first two
pass bands.

Notice that in Fig. 7(b) the two mode-pair approxi-
mations give poorer results than does the single mode-
pair case. When two modes are used for a trial field,
one mode would be the one corresponding to the second
pass band and the other would correspond to either the
first or third pass band. But the corrections in o resulting
from the resonant modes corresponding to the first and
third pass bands are of equal magnitude. Inclusion of
the first and not the third pass band contribution causes
more of an error than if both extra terms were not used.
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Fig. 7—(2) The « vs ¢ characteristics for the periodically loaded
transmission line for the first pass band. (b) The w vs ¢ character-
istics for the periodically loaded transmission line for the second
pass band.
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Notice that the three mode-pair case using resonant
modes corresponding to all three pass bands is more
accurate.

Fig. 8 indicates that as the shunt loading is increased,
the mode-coupling equations give better results. This
is due to the fact that coupling between adjacent sec-
tions of the structure is weaker and each section be-
haves more like an independent cavity. The trial
fields then resemble the actual fields more closely and
hence we get better results.

IV. CoNCLUSIONS

It has been shown that a mode-coupling approach to
the solution of a heavily-loaded periodic structure leads
to simple and appealing equations. Moreover, the mode-
coupling approach is shown to have as its formal
mathematical basis the variational principle which al-
lows the use of approximations in field configurations.
Indeed, the use of a variational principle guarantees
that the approximations resulting from the chosen
trial field configurations are made in a systematic way
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Fig. 8—(a) The w vs ¢ characteristics for two loading factors for the
first pass band. (b) The » vs ¢ characteristics for two loading
factors for the second pass band.
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so as to give the optimum value of w or k% for a given
phase shift per section, ¢. It is legitimate to make the
small errors in choosing trial fields as long as one knows
that these errors lead to errors of lower order in the
final results, the values of w or k2.

Also, the mode-coupling or variational technique did
lead to an acceptable and simple equivalent lumped
circuit for a periodic structure with heavy shunt load-
ing. This [orm of equivalent circuit has been assumed
many times without the mathematical verification for
its validity.

The single mode-pair coupling coefficient between
sections of the periodic structure has the form

J.

a, X e, (0" -H,(0M)da

f e - E,dV
v

which gives a clear indication as to the mechanism in-
volved in this coupling. What one must do to increase
or decrease or change the sign of this coupling is also
clear. Very complicated coupling schemes have been
studied from the point of view of mode coupling and
it is easy to predict qualitative behavior of these com-
plicated structures [6].

One must realize that mode coupling as used here,
is an intuitive concept, in that it allows the intuition to
help in getting an approximate solution to a com-
plicated problem. Mode coupling provides the trial
fields which are then used with a variational principle
to arrive at mathematically-sound expressions for ap-
proximate answers.

ArpENDIX |

It is to be understood that (6) is a variational prin-
ciple for w if it can be shown that for first-order varia-
tions of the trial fields from the exact fields, the first-
order variation in w vanishes. There remain only second-
and higher-order variations in w. Consider E; to be the
exact field existing in the periodic structure. We do
not know the details of this exact field solution, but
we can make reasonable guesses from experience as to
what the field should look like. As a trial field, we then
do not use E, because we don't know it, but we use a
trial field which may be expressed as the exact field
plus a small functional variation,

E." = E, 4 SE,. (40)
We wish to see how the variations of all the fields ap-
pearing in (6) affect the value of w. Notice that the
variational notation § used as an operator is commuta-
tive with respect to differentiation, so we can perform
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the following type of transformation,
f E_*.V X 8H,dV =f5H+.v X E_*dV
14 14
+ f no X 8H,-E *da. (41)

We can then find the first-order variation of §[w] to be

ja[w][u f H,-H *V + ¢ f E+~E_*dV:|
v 14

- f BE_*-(V X Hy — juweB,)dV
1’4
_ fVBH_*-(V X Ey + jouH.)dV
- fV SE,-(V X H* + jucE¥)dV
+ f 8H,-(V X E_* — jouH *)dV
Wy

—fn() X E_,*-BH+da '—fn(] >< 6E+'H_*dll. (42>

Since we know that the E, and H, (exact) fields
satisfy Maxwell’s equations, the first two terms on the
right-hand side of (42) vanish. Also, we see that the
adjoint solution is the wave solution that must satisfy
(43)

(44)

VX E* — jouH.* =0
VX H* + jweE_* = 0,

if the third and fourth terms on the right-hand side
of (42) are to vanish. We are further constrained to have
as a boundary condition on the adjoint solution

nyg X E_* = on S, (45)

and we must also be careful in choosing trial fields so
that

nyg X 8E, =0 on S. (46)

In order to show that 8w, the first-order variation of w,
vanishes for arbitrary variations of the fields, we must
deal with the surface integrals over the plane of the
coupling holes Sy and S,'.

One way to make these surface integrals vanish is to
have the integrals over S¢’ cancel those over .Sy’ If we
choose trial fields which satisfy Floquet’s theorem,
then we see that if the adjoint solution satisfies Floquet's
theorem we have for one of the integrals,

f o X E_*(0)-5H,(0)da
81

+ ny X E_*(L)-8H,(L)da.

8y’

(47)
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But ny on Sy’ is the unit vector a, and no on Sy’ is —a..
Also, we choose trial fields so that

SH.(L) = 8H(0)eE. (48)

Then, if we have

E (L) = E_(0)eE, (49

it is seen the surface integral S\’ cancels the one over
Sy’ for v imaginary. Also, we are forced to have

SE.(L) = SE.(0)e™

H_(L) = H-(0)e", (50)

in order that the last integral in (42) be zero. This
means that the adjoint fields satisfy Floquet's theorem
and so satisfy all the constraints that the original fields
E. and H, do. But it is important to notice that the
trial fields must be chosen so that the variations in the
E, and H, fields satisfy Floquet’s theorem and this will
be fulfilled if the trial fields themselves satisfy Floquet’s
theorem. Under all these constraints, (6) is a variational
principle for w.

Notice the important point in this mathematical
development that although the adjoint solution satisfies
the same constraints that the original fields do, we are
not constrained to make the adjoint the same as the
original solution. This degree of freedom in choosing
the adjoint solution is the key to the treatment of the
periodic cavity structure.

AppENDIX II

To show that (32) is actually a variational principle
for %%, we find the first-order variation in %% using the
usual variational operational notation. Notice that the
double transformation of the integral below leads to
two surface integrals.

j;E_*-Vx Vx6E+dV=fV><5E+-V>< E_*dV
v
+j[“° X (V X 8E,)-E_*da
=f6E+-V X V X E_*dV
,
+f no X 8E_-(V X E_*)da

+fn0 X (V X 8E;)- E_*da. (51)

By use of (51) a variation of (32), yields

[ .fVE+-E_*dV:|6[k2]

= f SE_*-[V X V X Ey — k2E,]dV
14
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+f 3E,-[VX VX E* — R2E_*|dV
14
—’r—%‘no X (VX SE,)-E *da

+fno X 6E-(V X E_*)da. (52)
If we substitute into (52) the exact solution for the
periodic structure, §E, =0 everywhere and we see that

8[k2] = 0. (53)

Then, (32) is a variational principle for k* but it re-
mains for us to find the constraints on the E_ field.
Clearly, if 8E, is not zero, we must have

VX VX E*—RE*=0 (54)

to make the right-hand side of (52) zero. A boundary
condition that

ngX E*=0 on S (55)

is also required, as well as the constraint of (5). We are
constrained to choose the trial field so that

nye X 8E, =0 on S, (56)

in addition to the properties for E_ found in Appendix
1. Also, if the trial field E, T is constructed so as to satisfy
Floquet’s theorem, we see that the surface integrals
vanish again and (32) is a variational principle for k2.
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