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of arbitrary shape in an otherwise isothermal cavity.

In more general terms, these effects will occur in the

radiation from a blackbody surface at wavelengths

which are of the order of the body dimensions.

Finally, it is worth while to recall that simply by

invoking the thermodynamic principle of the detailed

balancing of radiation one can compute the spectral

absorptivity of a body from its spectral thermal radia-

tion pattern or vice versa. Thus, it follows that the

spectral absorptivity of a body also exhibits the above-

itemized characteristics at wavelengths which are of

the order of the body dimensions.
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Variational Principles and Mode Coupling in

Periodic Structures*

T. J. GOBLICK, JR.t AND R.

Summary—Variational techsdques are used in analyzing periodic
“cold” microwave structures for the angular frequency, W, as a func-

tion of assumed phase shift per periodic cell. Two variational ex-
pressions are given: one for w in terms of the E- and H-fields, and

one for kz = L02Win terms of the E-field. For structures with relatively
light coupling between cells, the trial fields to be used with the varia-
tional expressions are composed of closed cavity modes, phase
shifted by o radians from cell to cell. Both variational expressions
yield determinantal equations for kZ(@) which agree with equations
previously derived from a mode coupling point of view. One form of
an equivalent lumped circuit is given to represent the structure with-
in one of its pass bands.

Curves compare the variational-mode coupling expression for

W(O) of a periodically lumped loaded transmission line with exact
expressions.
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INTRODUCTION

P ERIODI C structures have received extensive

theoretical and experimental treatment in the past

in regard to applications in traveling wave tubes.

The advent of high power traveling wave tubes proved

it was still not a simple matter to design slow wave

structures which could dissipate large amounts of

power while still operating over a relatively large band

of frequencies [1].

To analyze a simple periodic structure, such as an

iris-loaded waveguide, is a formidable task. The method

of analysis used here is that of mode coupling. For the

case of a very heavily shunt-loaded waveguide, the

coupling holes in the irises are small compared to the

total iris area. The structure resembles a chain of

loosely-coupled resonant cavities and so the electric

and magnetic fields of the structure resemble normal

cavity modes of a section of the structure. The weaker

the coupling between sections is made, the closer is the

resemblance of the fields to those of the actual cavities.
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In this mode-coupling analysis, the fields of the

periodic structure are approximated by the normal

cavity modes of oscillation of a section of the structure.

These cavity modes are phase shifted from section to

section by a phase angle q5 to simulate a propagating

wave. By use of these approximations, a relation be-

tween W2 (u= frequency) and phase shift per section,

d, may be derived. In this way, the propagation

characteristics of the heavily loaded structure are ob-

tained in terms of resonant modes of a Ci3LVi@ section

of the structure for any assumed phase shift ~. The

coupling coefficients between adjacent sections are ex-

pressed in an intuitively appealing form in this mode

coupling approach.

In solving for the physical parameters of a very

complicated system, we often find it adva.ntageous to

use variational techniques to arrive systematically at

good approximate answers. Such techniques have been

used to find cutoff frequencies and propagation con-

stants of waveguides as well as resonant frequencies for

cavitie:s. In all of these applications, variational prin-

ciples allowing the use of trial fields which are not ex-

actly cm-rect in detail can give quite accurate results.

The periodically loaded waveguide, viewed either as

a waveguide with slight periodic perturbations of its

walls or as a chain of coupled cavities, can be treated

using a variational principle. The variational principle

used here allows U2 to be computed for assumed trial

fields and phase shift per section ~. For the case of

heavy shunt loading of the guide, trial fielck which are

actually resonant modes of a cavity section of the

structure are used together with an assumed 4. The

relation between U2 and @ that is found is identical to

the coupling equations derived purely from a mode

coupling approach [2], [3].

The variational technique is appealing because it

yields a sort of optimum value of & for the given set of

trial functions, namely that a2 which is minimized for

these trial functions. But this implies that the error in

U2 is of second order compared to the actual error in

the trial functions, and this is the advantage of this

techniclue. The trial fields are not just used as approxi-

mate fields to get answers; they may be adjusted ac-

cording to a definite procedure to obtain the most ac-

curate approximation to the correct co2 for the assumed

form of the trial fields.

The fact that the same coupling equations are found

from mode coupling and from the variational principle

signifies that the mode-coupling formalism has a formal

mathematical basis in variational techniques. Mode

coupling, then, is not simply an intuitively convenient

approximation to use in some problems.

The results obtained here for the heavily-loaded

periodic structure are useful in studying the effects of

more complicated schemes of coupling between ad-

j scent cavity sections. The mode-coupling equations

for a capacitively lumped-loaded transmission line were

derivec[, and for this simple periodic structure it is easy

to obtain curves to show how well very simple trial

fields may be used to obtain accurate answers.

II. THE VARIATIONAL PRINCIPLE

In a ~ossless periodic structure such as the iris-loaded

waveguide shown in Fig. 1, we know that the electric

and magnetic fields satisfy Maxwell’s equations

VXE+j.pH=O, (1)

VXH–jucE=O, (2)

when the medium filling the structure k isotropic,

homogeneous, and nonconducting (a ti]me.-dependlence

of ei”~ has been assumed), The boundary condition that

the electric field satisfies is stated as

nxE=O on S, (3)

where n is the unit vector which is normal to the per-

fectly conducting surface S which makes up the periodic

structure, (see Fig. 2). Another important propen:y of

the fields in a periodic structure is expressed in a theorem

by Floquet [4]. From this theorem, we may write in

functional notation

E(u1, u2, z) = ~(uI, u2, z)e–yz, (4)

where now E(u1, uZ, z) is a periodic function of z having

the same period L as the structure. (ul and U2 are gen-

eralized transverse coordinates.)

E(ul, u,, z) = i(u,, u,, z + L). (5)

The magnetic field naturally has this same property.

Using these known properties of the fields of the

periodic structure, one may derive a variational expres-

sion for ju. Consider the E- and iY-fields of (1) and (2)

to pertain to a wave traveling in the positive z-direction

Fig. I—An iris-loaded waveguide.

(-[) (o) (+1)

Z=(J z. L

z-----

Fig. 2—A section of the periodic structure showing notation used.
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of the structure. Calling these fields E+ and H+, we

may now dot-multiply (1) by ET-* (*stands for complex

conjugate), the magnetic field of another wave solution

called the adjoint solution, and integrate throughout

the volume V of one cell or section of the structure.

Correspondingly, multiply (2) by E_*, the electric

field of the adjoint solution, and integrate. Subtracting

the two resulting equations and solving for ju, which

is not a function of the variables of integration, gives

f
E–*. V x H+dV – s H-* . V X E+dV

v
jk! == —v—

J’

. (6)

M H+ .H_*dV + es E+. E_*dV
Y v

The proof that (6) is actually a variational principle

for o is given in Appendix I. It is found in this proof

that for arbitrary first-order variation of w equal to

zero, the ad joint solution satisfies the equations

V x E.* – jCJpH_* = O (7)

V x H.* + juE-* = O, (8)

provided the adjoint trial field satisfies boundary con-

dition (3) and the conditions E–(L) = E_(0) e–~L,

H(L) = H– (0) e–~L. Since the latter conditions imply

Floquet’s theorem, we can demand

E_(z.~1, ttz, Z) = E–(zLl, %, Z) e–y’, (9)

where this is the same value of -y as in (4), which in-

dicates that the adjoint wave also propagates in the

positive z-direction.

The variational principle may be used together with

suitable trial fields for E+, H+, E–, and H_ to obtain

approximations to w which are in error to second order

compared to the errors in the trial fields themselves.

Consider first an iris-loaded waveguide in which the

cou-pling holes in the irises are very small. The coupling

between adj scent cells is now very weak and the

periodic structure actually appears to be a chain of

weakly-coupled cavities. The fields in a particular

cavity section of the periodic structure should resemble

to a fair degree the fields of an undriven cavity. For this

case then, the pass bands are very narrow compared to

the stop bands; and since we are interested in the propa-

gation characteristics in a pass band only, we are con-

cerned with a narrow frequency range. It seems rea-

sonable, then, to approximate each field by several

terms of a normal mode expansion of a cavity section.

This is what we will do to construct trial fields. The

simpIest approximation would be to use only one term

of a mode expansion as a trial field.

However there are two different normal mode ex-

pansions which can be defined for a cavity section. The

short-circuit mode expansion is derived for the boundary

condition that the tangential electric field disappears

over the entire surface of the cavity including the sur-

faces S/, S2’ (see Fig. 2) in the plane of the holes. The

open-circuit mode expansion is found for the boundary

condition of (3) on S (but the tangential magnetic

field must be zero on S1’, S2’). These two mode expan-

sions are closely related to the behavior of the periodic

structure. For every short-circuit resonant mode, there

is a corresponding open-circuit mode which has fields

very similar to the short-circuit mode except in the im-

mediate vicinity of the coupling holes. The resonant

frequencies of this pair of modes are not very different

when the holes are small. The frequency range between

them corresponds to a pass band of the periodic struc-

ture [4]. To obtain an approximation to the propaga-

tion characteristics in a particular pass band, we would

choose the short-circuit mode corresponding to that

pass band as the E+ and H+ trial fields and the open-

circuit mode as the E_ and H_ trial fields.

Let us summarize the properties of these two mode

expansions. First, the fields of the nth short-circuit

mode can conveniently be defined by the equations [5]:

v x En = P.H., (lOa)

V x H. = P. E., (lOb)

P.~ = Ol,nzpe, (11)

nox En=O on S, S1’, S2’, (12)

where no is the outward unit vector normal to the

boundary surface of a cavity section. w,. is the resonant

frequency of this nth short-circuit mode. For the mth

open circuit mode the resonant frequency is wo~ and

the corresponding equations are:

V X e. = p.hm, (13a)

V X hm = Pmem, (13b)

pmz = UOmzpe, (14)

noxem=O on S, (15a)

nOxhm=O on S1’, Szf. (15b)

We have seen from Appendix I that the trial fields

must also satisfy Floquet’s theorem, so the E+ trial

field is constructed as follows. Remember that we are

trying to approximate the fields of the periodic structure

for frequencies in the nth pass band for a propagating

wave having a phase shift per section of o radians, The

electric field in the (0) cavity section of Fig. 2 is ap-

proximated by the cavity short-circuit mode E.. The

field in the preceding ( – 1) cavity section is assumed to

be the same as in the (0) section, but phase shifted by

an angle ~ to simulate propagation in the positive z-

direction,

E+(0) = V. E.; E+ (–1) = v@ei4. (16a)

The H+ trial field is similarly constructed from Hm.

H+(o) = I.H.; H+(–l) = ~tiHfieid. (16b)
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V. and lti are merely adjustable amplitude factors in

the trial fields which will be adjusted in an optimum

way using the variational principle.

For the adjoint trial fields, propagation in the positive

z-direction is also simulated, and we use the open-

circuit mode corresponding to this nth pass band in

which we are interested.

These trial fields are now substituted into (6) and a

relation for jw is found in terms of 4, the phase shift per

section. An important point to notice is the fact that

the trial fields are discontinuous in the plane of the

holes because each cavity mode is actually a standing

oscillation. The discontinuity is due to a phase shift

and possibly to the behavior of the mode patterns (see

Figs. 3 and 4). If the surfaces S1’ and S2’ are considered

as pill”box volumes only Az thick in which the discon-

tinuities appear, we lmust choose the volume, V, of one

section so that it includes part of the pillbox at S1’ and

part of the pillbox at S,’ so the total volume integral

throughout a section contains the volume of one whole

pillbox (see Fig. 2).

(a) (b)

Fig. 3—Examples of (a) an even short-circuit mode and (b) an even
open-circuit mode. Solid lines represeut electric field lines; dashed
lines represent magnetic field lines.

(-1) (o) (+1) (-1) (o) (+1)

JE7K3fL
ZIbd!cE

(a) (b)

Fig. 4—Examples of (a) an odd short-circuit mode and
(b) an odd open-circuit mode.

In (6), the integral

f
E–* . V x H~.dV

v

may be broken up into the integral over the volume of a

section plus an integral over a pillbox. The pillbox

volume is important in this term since there is a differ-

entiate on of field discontinuities in V X H+. Since Az is

considered to be very small and the trial field to be

substituted for E_* is tangential at S1’ and St’, we may

replace v x H+ by a. X8 H+/dz, Which is the only term

producing components tangential to S1’ and S2’,, The

pillbox integral may be written as

s [s

Z=o+

1
e,,*. V x H%dz da

Slt z=o–

‘s [J
.Z=I)+a

1
en*. .a X ~z. H.dz da

Slt z=o–

1
—-s; ~,,[%’(0-) + %“(0+)]

. [a. X H~(O+) – a. X H~(O--)]da. (18)

The final result in (18) is obtained by our assuming any

smooth functional variation of the fields en* and H.

within the pillbox, so long as each of these fields has the

same functional variation. The final result, then, does

not depend on the specific functional variation, and the

form in (18) emerges.

The cavity modes of a section of the periodic struc-

ture are either symmetric or antisymmetric with respect

to the z-axis in a section. Let us define a.n “even” mode

as one which has an even number of reversals (of its

electric field along the z-axis of a section. From Fig. 3,

we can see that for even modes,

21.0(0-) = H.(–’)(L) = H.(–’J(0) = H.cOJ(0)e@, (19a)

e~o(o–) = ea(–l)(~) = – e.(–lj(0) = – e.(0)(O)e~~. (19b)

Let us solve for ~(~) between PZ and Of by employing

the E2—H2 and ez—hz modes in (6). VVith the aid of

(16), (17), and (18), the expression for a is found to be

v2*12P2T2 — v2*I&12(l — COS~) — iz*V@tU2
ju = — ~~(20)

/.LI&* Uz + ~Vzvz* Tz

We have defined

T, =
J

e2*s E2dV
v

u, =
J

h,*. H,dV
v

M2 =

s

a. x et* (0+) GHt (O+) da.,
S1’

where a. is the unit vector in the z-direction. To op-

timize the coefficients for the best approximation to

u we must minimize (20) with respect to each amplitude

coefficient. Setting the partial derivatives of (20) with

respect to it* and W* equal to zero gives the coupling

equations

P2V2 = — fi+urz, (21)

P,I,T2 =JMV,T, + I,MJ1 – COS~), (22)

Eliminating Vt from these two expressions results in

one equation

(P,2 – k’) Tz = PM,(1 – COS 1#1), (23)
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where kz = Uzpe. Eq. (23) also results from our varying

(20) with respect to I, and v’,.

When the phase shift per section is T radians, we are

at a cutoff of the pass band and also at a resonance of a

cavity section. For even modes, @= ~ radians corre-

sponds to the open circuit resonance where then kz = pz.

Use of this information in (23) leads tol

P2M2 1
— = ~ (P,’ – p,’).

TZ
(24)

Then (23) may be simplified to,

k, - PZ2+ P22 h,’ – p,z Cos +.
2–2

(25)

We define “odd” modes as those normal modes of a

cavity section in which the electric field reverses an odd

number of times along the z-axis. From Fig. 4, we can

see that for odd modes (19a) and (19b) take the new

form

~~0(0–) = ~~t–l) (L) = – ~. f–l) (0) = – H.(o) (0)e~@, (26a)

e.O(O–) = e.f–l)(L) = e.f–lJ(C)) = e~(o)(o)e~’$. (26b)

Use of these expressions would give as a final result

k, = pl’ + P12 ● p,’ – P,’
Cos 4,

2 2
(27)

where we use the odd subscript 1 to show that (27) ap-

plies for an odd mode pair.

If more cavity modes are included in the trial fields,

one obtains a matrix equation whose determinant set

equal to zero replaces the (23) for kz. This determinant

checks that previously derived from a mode-coupling

approach [2]. It will also agree with the determinant

later to be derived from a variational expression for kz

in terms of the E-field alone.

An equivalent circuit interpretation of (2o) follows

for both even and odd modes. Combining (19a) and

(19b) with (26a) and (26b) results in a compact way

to express the mode properties:

H.(L) = (– l)”H.(0) = H.(O–)e–~~ (28a)

e~(L) = (— l)~+le~(0) = e~(O-) e–@, (28b)

where the subscripts n will be even to refer to even

modes and odd when odd modes are used. If we use

(28a) and (28b) in (6) and obtain a more general form of

(20) valid for even or odd mode pairs we may vary this

expression with respect to V., 1%, vn*, and in* in a man-

I It k to be understood that this relation (24) is valid for a cavity
section if the fields used for E–* and E+ in the integrals Mi and Ti
are valid representations of the exact fields at its open- and short-
circuit resonances, respectively. In this case of a lossless structure,
only a sing Ie mode is used to represent the fields at each of these
resonances, and (24 ) is exact. If complete open- and short-circuit
normal mode-expansions for the cavity section were used in MZ and
TZ, in general, (24) would be exactly true.

ner analogous to our operations with (20). We obtain

a set of equations which leads to an equivalent circuit

representation of the two-mode-coupling approximation

(even or odd modes) for a periodic cavity structure.

Now define

We have now

v. +

(29)

(–1)”

Ine–i4
— _ (–1)” = o. (30)

2joK’n ~
n

Fig. 5 shows a lumped circuit which leads to the same

(30) and is then one form of an equivalent circuit for

the periodic structure. This equivalent circuit stems

directly from the mode-coupling approach. For even

modes, the quantity T./iIf. is negative. For odd modes,

T./Mm is positive and there is a negative capacitive

coupling between cavity sections.

V(- 1). Vnc+i+’
n v“ V(+I). Vne-j+

n
----- -

— c“Ln

-- a+—+m= lE ---

mlcmlm
-------E T ---

(-l) (0) (+1)

z—

Fig. 5—A lumped equivalent circuit for the periodic structure from
the single mode pair analysis. The dotted lines correspond to odd
modes, solid lines to even modes. (C, = — 2 CnTn/l@.

In the variational principle derived here, both electric

and magnetic fields appear, and this means both trial

fields must be chosen, but according to certain con-

straints. There is another variational principle for

periodic structures in which only a single field appears.

The electric field of a periodic structure obeys the vector

wave equation

VxVx E–k2E =0. (31)

We may consider the E-field of (31) to pertain to a

wave traveling in the positive z-direction and call it the

E+ field. Then dot-multiply (31) by E–*, the adjoint

wave electric field, and integrate throughout the volume

of one section of the structure. Solving for kz, we get
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sE–*. VxVx E+dV

~2= v
(32)

sE-* . E+dV
v

The actual proof that (32) is a variational principle for

kz involving only electric fields is shown in Appendix II.

It is fc)und in this proof that setting ~ [k’ ]== O forces the

ad joint solution to satisfy the equation

VxVXE_*–k2E–* =0, (33)

provided E–(L) = E–(0) e–~L. Since the latter condition

implies (9), we see that the adj oint is a wave propaga-

ting in the positive z-direction. Now we need only to

construct trial fields for E+ and E– for (32).

This time, let us construct more general trial fields

for mc)re accuracy in finding .#. If the modes of either

same) and set the equations equal to zero. For the uth

(au) coefficient, we would get

~[(PJ - k2)T.. - P.Mum{+ + ; (--1)”+”

— ; (-l). - ;(-l)~}-\bm? = o. (35)

The following definitions have been introduced:

T ~m =
s

Eus e~*dV
v

Mum = s a.Xem*(O+), Hw(Ol+)da.
SIt

We could cast this set of equations into matrix form,

which would yield the determinantal equation for k2

in terms of ~.

1 IILI

expansion were arranged in order of increasing resonant

frequencies, one would find even and odd modes al-

ternating. We could attach even or odd subscripts to

correspond to even and odd modes, and th~en the mode

properties could be written as in (28a) and (28 b). The

simple single mode-pair approximation using only a

single term for each trial field gives good results when

the ccupling between cavities is weak. As the coupling

holes are made larger, the actual fields do not resemble

very closely a single resonant mode of a section. The

next step in trial fields would be to make them more

accurate by including several more terms of each ex-

pansion for trial fields. The extra terms should, of

course, be chosen as those having resonant frequencies

closest to the pass band of interest. The trial fields in

the (0) cavity may be expressed as

E+(Oj=alE1+a’Ez+”””+a.Ea +.. .

(34a)

the lowest-order mode being even, as depicted in Fig. 3.

E–f”) = blel + bze’ + . . . + bfie~ + . “ “

(34b)
?n

Putting these trial fields [(34a) and (34b) ] into (32)

would give a coupling equation containing the Co-

efficients an and bm. To optimize these coefficients for

the values of kz corresponding to the perturbed Pm and

Pm, we would take partial derivatives with respect to

each an (or b~; the final determinantal equation is the

The determinantal equation arising from (36) agrees

exactly with that found by Bevensee [21, solving the

problem without the use of the variational priuciple

but merely using a straightforward mode-coupling ap-

proach. It can also be seen that (36) simplifies tcl (25)

(with the “2” subscript changed to “O”) or (27), if only

illll or MZZ is assumed to be nonzero. This reduces the

trial fields to the single mode-pair case again.

If we used the complete normal mode expansions in

(34a) and (34b), we could represent the fields in a

cavity section exactly at any frequency, and these trial

fields, together with (32), would yield an exact deter-

minantal equation for kz. In this paper, we are studying

the problems of approximating this determinantal

equation for kz by using approximate lbut simple trial

fields in (32).

II 1. THE PERIODICALLY LUMPED-LOADED

TRANSMISSION LINE

For illustration of the accuracy inherent ii-l this

mode-coupling approach to periodic structures, n umer-

ical results were worked out for a simple mode [ of a

periodic structure. The model chosen was a transmission

line shunted periodically by lumped capacitance. Since

the exact propagation characteristics for this model

can easily be found, a comparison cordd be made be-

tween the exact behavior and that predicted by the

mode-coupling equations [6], [7].

The periodically-loaded Iossless transmission-line

model that was found very convenient to handle using

variational techniques was that of a nonuniform IIine in
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which the inductance and capacitance were allowed to

vary (periodically) with distance along the line.

Analogous to the Maxwell equations used for the

periodic cavity structure, we now have the nonuniform

transmission-line equations

: v(z) = – jd(z)~(z)

; I(z) = – jmc(z) l“’(z),

(37)

(38)

where the time dependence ei”t is assumed again, and z

is the distance along the line. It can be verified in a

manner completely analogous to the above presenta-

tion that a variational principle for this periodic struc-

ture is

JoLv-*;[& :~+]~z,39,

~2=_ )

s
L
c(z)v+v_*dz

o

where L is the length of one periodic section of the

structure.

Up to this point these expressions are perfectly

general for a lossless, periodic, transmission-line struc-

ture. For simulation of periodic shunt loading by

lumped capacitor elements, L(z) is treated as a con-

stant, LO, and C(z) takes the form of a constant, co,
plus impulse functions (area 2 C,) which appear periodi-

cally with separation L. This completes the one-

dimensidnal formulation of this structure. Fig. 6 shows

(-1) (o) (+1)

Tr-----l-rzT’----r
7s P 7s T’

sD-1-o----~----A
o i

z-

Fig. 6—The periodically-loaded transmission line
broken into sections.

the structure that is analyzed when it is broken into

convenient periodic sections. The open-circuit and

short-circuit modes of a section of this structure are

easily found, and these modes are used to approximate

voltage and current distributions on the section. The

open-circuit modes are substituted in (39) for V_ and

the short-circuit modes for V+.

Curves for the structure shown in Fig. 6 are shown

only~for two pass bands occurring at the lowest fre-

quencies. When the trial fields consist of only single

terms of the mode expansions discussed above, the

curves are marked ‘(single mode-pair case”; for trial

fields of two terms from each expansion, the terminology

“t~To mode-pair case” is used, etc.

The loading factor is defined as the ratio of the sus-

ceptance of one of the shunt capacitors to the charac-

teristic admittance of the unloaded line at a normalized

frequency of 1. Fig. 7 shows the u vs @ characteristics

for the first two pass bands for the various trial fields.

Fig. 8 shows the u vs @ curves for various loading factors

(various amounts of shunt loading) for the first two

pass bands.

INotice that in Fig. 7(b) the two mode-pair approxi-

mations give poorer results than does the single mode-

pair case. When two modes are used for a trial field,

one mode would be the one corresponding to the second

pass band and the other would correspond to either the

first or third pass band. But the corrections in u resulting

from the resonant modes corresponding to the first and

third pass bands are of equal magnitude. Inclusion of

the first and not the third pass band contribution causes

more of an error than if both extra terms were not used.

~, PHASE SHIFT / SECTION IN RAOIANS

(a)

1,25
>
v
z
u

[.203
0
Id
LK
L

1.15
n

— EXACT
:
i 1.10 —

---- I MODE PAIR
<
2 ‘-—Z MODE PAIRS
K

A ] sT AND ZMD MOOE PAIRS .
$2

.& PHASE SHIFT / SECTION [N RADIANS

(b)

Fig. 7—(a) The o vs C#Jcharacteristics for the periodically loaded
transmission hne fo[ the first pass band. (b) The u vs @character-
istics for the periocbcdly loaded transmission line for the second
pass band.
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Notice that the three mode-pair case using resonant

modes corresponding to all three pass bands is more

accurate.

Fig. 8 iudicates that as the shunt loading is iucrcased,

the mode-coupling equations give better results. This

is due to the fact that coupling between adjacelli- sec-

tions of the structure is weaker and each section be-

haves nlore like an independent cavity. The trial

fields then resemble the actual fielcfs more closely and

hence we get better results.

It’. CONCLUSIONS

It has been shown that a mode-coupling approach to

the solution of a heavily-loaded periodic structure leads

to simple and appealing equations. lVIoreover, the mode-

coupling approach is shown to have as its formal

mathematical basis t:he variational principle which al-

lows the use of approximations in field configurations.

Indeed, the use of a variational principle guarantees

that the approximations resulting from the chosen

trial field configurations are rnacle iu a systematic way
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Fig. 8-–(a) The o vs o characteristics for two lo?ding factors fo]- the
first pass band. (b) The a vs @ characteristics for two loading

factors for the second pass band.

so as to give the optimunl value of @ or k2 for a given

phase shift per section, ~. It is legitimate to make the

sl]lall errors ill choosing trial fields as long as one knows

that these errors lead to errors of lower order in the

fill:d results, the values of o or k2.

Also, the mode-coupliug or variational technique dicl

lead to an acceptable and simple equivalent lumped

circuit for a periocfic structure with heavy shunt load-

ing. This form of equivaletlt circuit has been assumecl

nmn y ti lnes without the lnathematical verification for

its validity.

The single mode-pair coupling coefficient between

sections of the periodic structure has the form

s a. X em*(O+) . H.(O+)cZa
s,’

>

se~*. E,,dV
v

which gives ZL clear il~dication as to the mechanism in-

volved in this coupling. What one must do to increase

or decrease or change the sign of this coupling is also

clear. Very complicated coupling schemes have been

studied fronl the point of view of mode coupling and

it is easy to predict qualitative behavior of these com-

plicated structures [6].

Onc must realize that mode coupling as used here,

is an intuitive conceI)t, in that it allows the intuition to

help in getting an approximate solution to a com-

plicated problmn. Lfode coupling provides the trial

fields which are then used with a variational principle

to arrive at lllat]lelll:ttically -soLLlld expressions for ap-

proximate answers.

APPENDIX I

It is to be understood that (6) is a variational prin-

ciple for co if it can be shown that for first-order vari:~-

tious of the trial fields from the exact fields, the first-

orcler variation ill u vanishes. There remain only secolld-

and hi~her-order variatio]ls in co. Consider E+ to be the

exact field existing iu the periodic structure. We CIO

not know the details of this exact field solution, but

wc can make reasonable guesses from experience as to

what the field should look like. As a trial field, we then

do not use E+ because we don’t know it, but we use a

trial field which may be expressed as the exact field

plus a small functional variation,

we \visll to see how tile variations of all the fields ap-

pearing in (6) affect the value of co. Notice that the

variational notation 6 used as an operator is conlmuta-

tive with respect to differentiation, so we can perform
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the following type of transformation,

s E-* . V x 6H~dV = s 6H+ . V X E.*dV
v v

.$
+ no x 6H+. E_*da. (41)

We can then find the first-order variation of 8 [u] to be

[sja[w]p H+. H.*dV + csE+. E_*dV
v v 1

. s6E.* . (V X H+ – jweE+)dV
v

—

s 6H-*.(V x E+ + jco~H+)dV
v

— s6E+. (V X H.* + jcxE_*)dV
v

,s+ 8H+ . (V X E_* – jwPh-*)dV
v

—

$
no x E-.*. 8H+da —

f
nO x 8E+. H-*da. (42)

Since we know that the E+ and H+ (exact) fieids

satisfy Maxwell’s equations, the first two terms on the

right-hand side of (42) vanish. Also, we see that the

ad joint solution is the wave solution that must satisfy

V x E–* – jq.LH-* = O (43)

V x H-* + jw6E_* = O, (44)

if the third and fourth terms on the right-hand side

of (42) are to vanish. We are further constrained to have

as a boundary condition on the adjoint solution

nOXE-*=O on S, (45)

and we must also be careful in choosing trial fields so

that

nOx6E~=0 on S. (46)

In order to show that 8c0, the first-order variation of u,

vanishes for arbitrary variations of the fields, we must

deal with the surface integrals over the plane of the

coupling holes S1’ and S!’.

One way to make these surface integrals vanish is to

have the integrals over S/ cancel those over S2’. If we

choose trial fields which satisfy Floquet’s theorem,

then we see that if the adjoint solution satisfies Floquet’s

theorem we have for one of the integrals,

f
no X E_*(0) . 5H+(0)da

SI’

+ ~g,,ne X E–*(L). WI+(L) da. (47)

But no on S2’ is the unit vector a. and no on S1’ is –a..
Also, we choose trial fields so that

3H+(L) = W+(0) e–’~. (48)

Then, if we have

E_(L) = E_(0) e–~~, (49

it is seen the surface integral S1’ cancels the one over

S2’ for y imaginary. Also, we are forced to have

5E+(L) = 8E+(0) e–~=

H–(L) = H_(0) e–~~, (50)

in order that the last integral in (42) be zero. This

means that the ad joint fields satisfy Floquet’s theorem

and so satisfy all the constraints that the original fields

E+ and H+ do. But it is important to notice that the

trial fields must be chosen so that the variations in the

E+ and H+ fields satisfy Floquet’s theorem and this will

be fulfilled if the trial fields themselves satisfy Floquet’s

theorem. Under all these constraints, (6) is a variational

principle for u.

Notice the important point in this lmathematical

development that although the adjoint solution satisfies

the same constraints that the original fields do, we are

not constrained to make the adjoint the same as the

original solution. This degree of freedom in choosing

the adjoint solution is the key to the treatment of the

periodic cavity structure.

APPENDIX II

To show that (32) is actually a variational principle

for kz, we find the first-order variation in kz using the

usual variational operational notation. Notice that. the

double transformation of the integral below leads to

two surface integrals.

s
E_*. VxVx6E+dV=

J
V x 6E~. V X E-*dV

v v

$
+ no X (V x 6E+) . E–*da

.

J
6E+ , V x V x E–*dV

v

$
+ ZIO X 8E_. (V X E-*)da

$
+ no x (V x 8E+) . E_*da. (51)

By use of (51) a variation of (32), yields

[~vE+E-*dv]@]

—

-s 8E–* . [V X V x E+ – k2E+]dV
v
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S+ 3E+. [VXVX
v

i- {noX (V X 8E~,

Variational Principles and Mode

E+” – k2E-*]dV

) . E–*da
./

$+ no X 8E+- (V X E-”)da.

If we substitute into (52) the exact solution

(52)

for the

periodic structure, 6E~ = O’ everywhere and we see that

6[N] = o. (53)

Then, (32) is a variational principle for k~ but it re-

mains ~or us to find the constraints on the E_ field.

Clearly, if 6E+ is not zero, we must have

VXVx E_*–kzE–*=O (54)

to maka the right-hand side of (52) zero. A boundary

condition that

nox E-*=0 on S (55)

is also required, as well as the constraint of (5). We are

constrained to choose the trial field so that

nOx~E+=O on S, (56)

in addition to the properties for E_ found in Appendix

1. Also, if the trial field E+T is constructed so as to satisfy

Floquet’s theorem, we see that the surface integrals

vanish again and (32) is a variational principle for k2.
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